
Chapter 6  Task Structuring 

Task structuring aims to allocate transformations from a data/control flow

diagram to tasks in a concurrent design.  This goal is accomplished by applying

knowledge about how to structure tasks. Task Structuring Knowledge is organized as

five, distinct, decision-making processes, shown in Figure 25.  The main information

used to structure tasks consists of a fully-classified data/control flow diagram, as

described in Chapter 4, and the state of the evolving, concurrent design.  The main

information created by applying Task Structuring Knowledge consists of a set of tasks

that become components in a concurrent design.

Task Structuring Knowledge embodies a relatively straightforward

decision-making strategy.  First, the transformations represented in the data/control flow

diagram are examined to identify those that might form the basis for a task.  This process

is facilitated by the concept classification performed earlier during the analysis of the

input specification (refer to Chapter 4, section 4.3).  Once the initial set of tasks is

determined, all remaining, unallocated, transformations (that is, those that do not provide

a basis for forming a task) from the data/control flow diagram are allocated among the set

of tasks.  Once all transformations are allocated to tasks, a number of criteria for

combining tasks are applied; thus, the initial set of candidate tasks might possibly be

reduced.  After tasks are combined, a final look at the task structure determines whether
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any tasks are needed to monitor shared resources.  Finally, the designer is offered an

opportunity to review the task structure, and to consider whether any of the tasks should

be assigned more appropriate names.1  To implement the task-structuring strategy, each

of the decision-making processes, shown in Figure 25, comprises a set of design-decision

rules that are based on task-structuring heuristics included within the CODARTS design

method.  [Gomaa93, Chapter 14]  

6.1  Identify Candidate Tasks

Task structuring begins with a decision-making process that: 1) identifies those

transformations in the input specification that can be allocated to a task,  2) makes the

necessary allocations, 3) captures the decisions and rationale, and 4) denotes the

traceability between existing specification elements and newly created design elements.

The decision-making process consists of a set of rules that look for input/output tasks and

for internal tasks based on the presence of certain types of transformations within the

input specification. For each appropriate transformation found, one task is added to the

evolving, concurrent design.  In the following subsections, the rules for identifying

input/output tasks are defined first, followed by the rules for identifying internal tasks.

6.1.1  Rules for Identifying Input/Output Tasks

According to CODARTS, each asynchronous device, periodic device, or external

subsystem represented on the context diagram of an input specification must be managed

1  To facilitate automated generation of designs, the design-decision rules use
algorithms for constructing the names of design elements.  Often these algorithms create
names, readily traceable to elements from the input specification, which prove unwieldy.
A designer is consulted to decide which names should be retained and which should be
changed.  When a name is changed, the designer assigns the new name.
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by a task.  Three design-decision rules enable such situations to be identified and acted

upon.

One rule reflects the asynchronous device-input/output task structuring criterion

from CODARTS.  [Gomaa93, pp. 190-191]

Rule: Asynchronous Device Interface

if
TransformationT is an Asynchronous Device Interface Object

then
if TransformationT is an Asynchronous Device Input Object
then create an asynchronous device-input TaskADI

elseif TransformationT is an Asynchronous Device Output Object
then create an asynchronous device-output TaskADI 
else create an asynchronous device-io TaskADI

fi
record the design decision and rationale in the design history for TaskADI

denote the traceability between TransformationT and TaskADI

fi

This rule recognizes each transformation in an input specification that inherits the concept

Asynchronous Device Interface Object.  Each such transformation forms the basis for a

task, but the type of task created depends upon the leaf-level classification of the

transformation.  Tagging newly created tasks with a specific task type facilitates later

decision-making and provides a readily understood reason for a task’s existence in the

design.

A similar rule corresponds to the periodic-device input/output task structuring

criterion from CODARTS.  [Gomaa93, pp. 191-193]
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Rule: Periodic Device Interface

if
TransformationT is a Periodic Device Interface Object

then
if TransformationT is a Periodic Device Input Object
then create a periodic device-input TaskPDI

elseif TransformationT is a Periodic Device Output Object
then create a periodic device-output TaskPDI 
else create a periodic device-io TaskPDI

fi
record the design decision and rationale in the design history for TaskPDI

denote the traceability between TransformationT and TaskPDI

fi

This rule recognizes each transformation in an input specification that inherits the concept

Periodic Device Interface Object.  As with the previous rule, the type of task created

depends upon the leaf-level classification of the transformation.  Segregating periodic

device-interface tasks as input, output, and input/output enables functional cohesion to be

considered along with temporal cohesion during the consideration of task mergers (see

section 6.3, below).

CODARTS does not include task structuring criteria for interfaces to distributed,

external subsystems, although Gomaa considers such issues in an extension to

CODARTS intended for distributed applications. [Gomaa93, Chapter 25]  The specification

meta-model, described in Chapter 4 of this dissertation, extends COBRA by adding a

terminator type to represent external subsystems and by adding an interface object type,

Subsystem Interface Object, that provides an interface to external subsystems.  This

extension to COBRA allows large, real-time problems to be divided into smaller, more

manageable, pieces that can then be modeled as a distributed system of subsystems,
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communicating using loosely-coupled messages across a logical, or virtual, network.2  To

represent this model of distributed subsystems, one task is allocated for each external

subsystem identified in the input specification.  A designer can use each external

subsystem to model a separate physical network, or as a placeholder in the design for

each external subsystem that is being designed independently.  The following rule

identifies the need for an external subsystem input/output task.

Rule: External Subsystem

if
TransformationT is a Subsystem Interface Object

then
create an external subsystem-io TaskSI

record the design decision and rationale in the design history for TaskSI

denote the traceability between TransformationT and TaskSI

fi

Although not always needed, this explicit identification of interfaces to external

subsystems can facilitate later integration of the subsystems into a larger design.

6.1.2   Rules For Identifying Internal Tasks

Several design approaches for real-time systems, including CODARTS, generate

designs from a data/control flow diagram.  By starting from a data/control flow diagram,

the designer retains the option to create either a sequential design or a concurrent design.

When generating a concurrent design from a data/control flow diagram, the structuring of

interior transformations into concurrent tasks is considered a difficult challenge that

2 Such logical networks might have actual counterparts in the various local area
networks sometimes used for real-time applications, for example, ethernets, token bus
broadband networks, or token-passing ring networks.
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typically relies on loose heuristics that can only be applied well by experienced designers,

using significant judgment.  For example, Nielsen and Shumate, identify seven process

selection rules that deal with internal transformations in a data/control flow diagram.

[Nielsen88, Chapter 9]  These process selection rules, based on an early version of DARTS

[Gomaa84], are described too informally to serve as a basis for generating formal

task-structuring rules.  The challenge of structuring internal tasks can, however, be

addressed more precisely by the approach proposed in this dissertation.

Assuming the existence of a semantically valid specification, design-decision

rules can be defined to identify candidate tasks from among the internal transformations

of a data/control flow diagram.  The internal task-structuring criteria included in

CODARTS provide a suitable starting point for defining the necessary rules.  [Gomaa93, pp.

193-196]

One rule allocates a task for each Control Object found within a specification.

Rule: State-based Control

if
TransformationT is a Control Object

then
create a control TaskC

record the design decision and rationale in the design history for TaskC

denote the traceability between TransformationT and TaskC

fi

This rule corresponds to the Control Task structuring criterion from CODARTS.  Since

each Control Object encompasses a state-transition diagram and since a state-transition
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diagram is sequential by definition, CODARTS uses the presence of a Control Object to

justify the creation of a sequential thread of control.

A second rule allocates a task for each User-Role Interface Object in an input

specification.

Rule: User Role

if
TransformationT is a User-Role Interface Object

then
create a user-role TaskUR

record the design decision and rationale in the design history for TaskUR

denote the traceability between TransformationT and TaskUR

fi

This rule reflects the CODARTS criterion for structuring tasks based on user roles.  Each

user of a system is assigned an interface task that performs sequential processing of user

requests.  Since modern operating systems allow a user to open and interact with multiple

windows on a single terminal, each user-role task represents a separate logical user, rather

than a physical user.

6.1.2.1  Internal Periodic Tasks

The CODARTS design method provides a criterion for identifying internal

periodic tasks based upon finding internal transformations that need to execute

periodically. [Gomaa93, pp. 193-194]  An example cited by Gomaa identifies a transformation

within a cruise control application that computes the distance traveled by an automobile.

This computation can be made periodically in order to ensure that the cumulative distance

traveled is fairly accurate at any given moment.  This single CODARTS criterion can be
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expanded into three rules.  Each rule recognizes one type of transformation on a

data/control flow diagram that can serve as the basis for an internal periodic task.

One rule reflects the periodic task criterion as described by Gomaa.

Rule: Periodic Algorithm

if
TransformationT is a Periodic Function

then
create a periodic internal TaskPI

record the design decision and rationale in the design history for TaskPI

denote the traceability between TransformationT and TaskPI

fi

Periodic tasks resulting from this rule simply execute periodically based on a timer.

The other two rules recognize transformations that execute periodically once

activated by a Control Object.  In some real-time applications, an algorithm might

execute only when a situation arises where the algorithm is needed.  Once the algorithm

is activated it might then execute periodically.  For example, consider an algorithm that

tracks enemy targets to maintain a fix on their location so that weapons can be placed

accurately.  This algorithm, once activated, might periodically calculate a new position

for the target.  Activation of the algorithm might depend upon a decision that the target is

hostile and should be attacked.

Two forms of controlled-periodic algorithm can be identified.  In one form, an

algorithm is activated by a Control Object and then executes periodically until it is

deactivated by the Control Object.
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Rule: Enabled Periodic Algorithm

if
TransformationT is an Enabled Periodic Function

then
create an enabled periodic TaskEP

record the design decision and rationale in the design history for TaskEP

denote the traceability between TransformationT and TaskEP

fi

For example, in a military air-defense application a target-tracking function might be

activated when a weapons officer presses an engage button.  The tracking function might

then execute periodically until the target no longer appears, or until a weapons officer

presses a disengage button.

In the second form of controlled-periodic algorithm, the algorithm is activated by

a Control Object and then executes periodically until the algorithm reaches an internal

decision that it is finished.

Rule: Triggered Periodic Algorithm

if
TransformationT is a Triggered Periodic Function

then
create a triggered periodic TaskTP

record the design decision and rationale in the design history for TaskTP

denote the traceability between TransformationT and TaskTP

fi

For example, imagine a videocassette system with a timed recording function that is

given a stopping time and then periodically checks to see if it has reached either the
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stopping time or the end-of-tape.  Whenever either condition is detected the function

deactivates itself.

6.1.2.2  Internal Asynchronous Tasks

The CODARTS design method provides a criterion for identifying internal

asynchronous tasks based upon finding internal transformations that need to be executed

on demand. [Gomaa93, p. 194]  An example cited by Gomaa identifies a scheduler

transformation within an elevator control application that receives requests for an

elevator, finds an elevator to assign to the request, and then sends that elevator a schedule

request.  The scheduler transformation remains idle until an elevator request arrives and

then completes the processing of that request before returning to an idle condition.  This

single CODARTS criterion can be expanded into three rules.  Each rule recognizes one

type of transformation on a data/control flow diagram that can serve as the basis for an

internal asynchronous task.

One rule reflects the asynchronous task criterion as described by Gomaa.

Rule: Asynchronous Algorithm

if
TransformationT is an Asynchronous Function

then
create an asynchronous internal TaskAI

record the design decision and rationale in the design history for TaskAI

denote the traceability between TransformationT and TaskAI

fi

Asynchronous tasks resulting from this rule simply execute whenever work arrives.
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The other two rules recognize transformations that execute on demand once

activated by a Control Object.  In one form, an algorithm is activated by a Control Object

and then executes on demand until it is deactivated by the Control Object.

Rule: Enabled Asynchronous Algorithm

if
TransformationT is an Enabled Asynchronous Function

then
create an enabled asynchronous TaskEA

record the design decision and rationale in the design history for TaskEA

denote the traceability between TransformationT and TaskEA

fi

For example, in the elevator control application cited by Gomaa, an emergency detection

feature might be added that can disable the scheduler transformation in the presence of

unsafe conditions within the elevator system.  When the emergency is cleared, the

scheduler could be activated.

In the second form of controlled-asynchronous algorithm, the algorithm is

activated by a Control Object and then executes on demand until the algorithm reaches an

internal decision that it is finished.

Rule: Triggered Asynchronous Algorithm

if
TransformationT is a Triggered Asynchronous Function

then
create a triggered asynchronous TaskTA

record the design decision and rationale in the design history for TaskTA

denote the traceability between TransformationT and TaskTA

fi
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For example, an on-line banking application might contain a transformation that

processes customer transactions.  The transformation could be triggered once the

customer completes a controlled authentication process.  Once triggered, the

transformation might execute customer requests on demand until the customer indicates

no more transactions are required.

6.2  Allocate Remaining Transformations to Tasks

Transformations in an input specification that do not lead directly to the creation

of tasks include:  Passive Device Interface Objects, Triggered Synchronous Functions,

and Synchronous Functions.  These remaining transformations must, however, be

allocated to tasks within the evolving design.  The CODARTS design method identifies

criteria for allocating transformations to tasks based on control cohesion, sequential

cohesion, and functional cohesion.  Using these criteria, a number of rules can be

specified to allocate the remaining transformations to tasks in the design.  These

transformation-allocation rules compose the second decision-making process required to

structure tasks within the evolving design.  These rules construct sequential chains

through the unallocated transformations to reflect the thread of control for each task in the

design.

6.2.1  Allocating Transformations Based on Control Cohesion

Reflecting a control cohesion criterion from the CODARTS design method, each

Triggered Synchronous Function is allocated to the same task as the Control Object that
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triggers the function.  This allocation occurs because a Triggered Synchronous Function

executes completely during the triggering state transition.

Rule: Triggered Synchronous Function

if
TransformationTSF is a Triggered Synchronous Function and
TransformationCO is a Control Object and
TransformationTSF receives a Signal or Trigger from TransformationCO and
TaskC  is derived from TransformationCO   

then
allocate TransformationTSF to TaskC

record the design decision and rationale in the design history for TaskC

fi

An example where this rule applies appears in a robot controller application described by

Gomaa. [Gomaa93, Chapter 23]  In the example, a Control Object, Control Robot, triggers six

synchronous functions:  Change Program, Start Program, End Program, Process Program

Ended, Stop Program, and Resume Program.  Based on a criterion for control cohesion,

all of these transformations are allocated to the same task as Control Robot.

6.2.2  Allocating Transformations Based on Sequential Cohesion

By definition, transformations classified as Synchronous Functions or Passive

Device Interface Objects must execute to completion once invoked.  In many situations,

this trait allows any such transformation to be allocated, based on sequential cohesion, to

each task whose execution reaches the transformation.  Four rules can be specified to

recognize situations where sequential cohesion applies.

One rule allocates a Passive Device Interface Object to any task whose execution

reaches that transformation.
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Rule: Passive Device Interface Object

if
TransformationPDIO is a Passive Device Interface Object and
TransformationPDIO receives a Signal or Stimulus from

 a TransformationT and
TransformationT traces to any TaskA

then
allocate TransformationPDIO to TaskA

record the design decision and rationale in the design history for TaskA

fi

An example were this rule applies can be found in the cruise control and monitoring

application referred to in earlier sections of this dissertation. [Gomaa93, Chapter 22]  In the

example, a Passive Device Input Object, Gas Tank, is accessed by two transformations:

Initialize MPG and Compute Average MPG.  During the design process these two

accessing transformations are allocated to two separate tasks.  As a result, the Gas Tank

transformation is allocated, based on sequential cohesion, to both tasks.  The act of

allocating transformations to tasks provides design information that can be used later (see

Chapter 9) when information-hiding modules (see Chapter 8) are examined to determine

which are shared among tasks and which are not.  In general, when a transformation is

allocated to multiple tasks and to one information-hiding module then the module is

shared by the tasks.

Another rule allocates any Synchronous Function that sends a Response to the

same task as the transformation that receives that Response.  This rule models the

sequential cohesion that exists between a subroutine and any caller of the subroutine.
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Rule: Responding Synchronous Function

if
TransformationSF is a Synchronous Function and
TransformationA is any Solid Transformation and
TransformationA receives a Response from TransformationSF and
TaskT is derived from TransformationA  

then
allocate TransformationSF to TaskT

record the design decision and rationale in the design history for TaskT

fi

An example where this rule applies appears in a robot controller system described by

Gomaa. [Gomaa93, Chapter 23]  In the example, a Synchronous Function, Process

Sensor/Actuator Command, sends a Response, Sensor Value, to an Asynchronous

Function, Interpret Program Statement.  The Asynchronous Function forms the basis for

an asynchronous task; the transformation, Process Sensor/Actuator Command, is

allocated to the task based on sequential cohesion.

A third rule allocates any Synchronous Function that sends only locked-state

events to a Control Object, but that sends no event or data flows to any other

transformation, to the same task as the Control Object.  This rule reflects the sequential

cohesion between a Synchronous Function that generates locked-state events and the

state-transition diagram that awaits those events.3

3 Although this rule identifies a simple concept, a task calling a subprogram, the
rule itself becomes fairly complex.  This complexity results in part from the fact that the
call from the task to the subprogram must be inferred from the data/control flow diagram
in situations where a directed arc goes from the transformation representing the
subprogram to the transformation representing the calling task.  Additional complexity
results from the fact that the transformation representing the subprogram must emit
directed arcs only to the transformation representing the calling task.  If these conditions
are not satisfied, then the transformation representing the subprogram should instead be
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Rule: Outputs Only Locked-State Events To A Control Object

if
TransformationSF is a Synchronous Function and
TransformationSF sends a Signal to TransformationCO and
TransformationCO is a Control Object and
TransformationSF sends no Signal to any other transformation and
TransformationSF sends no Stimulus and
TaskT  is derived from TransformationCO  and
each  SignalS from TransformationSF to TransformationCO is a 

locked-state event  and
TransformationSF and TransformationCO have identical cardinality

then
allocate TransformationSF to TaskT

record the design decision and rationale in the design history for TaskT

fi

An example where this rule applies can be found in an elevator control system described

by Gomaa. [Gomaa93, Chapter 24]  In the example, a transformation, Check This Floor,

receives a data flow, Floor Number, consults a data store to determine if the elevator is to

stop at that Floor Number, and, if appropriate, sends an event flow, Approaching

Requested Floor, to a Control Object, Elevator Control.  The event flow arrives only

when the Control Object is waiting for it to arrive.  If the transformation, Check This

Floor, is classified as a Synchronous Function, then the rule, as specified above, applies.

A fourth rule allocates each Synchronous Function that meets certain output

restrictions to the same task as the transformations that invoke that function.  The output

restrictions require that the Synchronous Function send any outputs in the form of Signals

or Stimuli (see Chapter 4 for the definitions of these concepts) to either another

allocated, using another rule, to one or more other tasks in the evolving design.
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Synchronous Function or a Passive Device Interface Object.  Where these output

restrictions are not satisfied, the Synchronous Function must be allocated to a task based

application knowledge unavailable to the design-decision rules.  The rule to allocate

Synchronous Functions  that meet output restrictions is specified below.

Rule: Synchronous Function With Synchronous Outputs

if
TransformationSF is a Synchronous Function and
TransformationSF sends no Signal or Stimulus to another TransformationAT

unless TransformationAT is a Synchronous Function or a
Passive Device Interface Object and

TransformationST is a Solid-Transform and
TransformationST sends a Signal or Stimulus to TransformationSF and
TransformationST is allocated to a TaskT 

then
allocate TransformationSF to TaskT

record the design decision and rationale in the design history for TaskT

fi

An example where this rule might apply can be found in a cruise control and

monitoring system, as described by Gomaa. [Gomaa93, Chapter 22]  In the example, a

transformation, Mileage Reset Buttons, sends two signals, MPG Reset and MPH Reset,

one to each of two Synchronous Functions, Initialize MPG and Initialize MPH,

respectively.  Initialize MPG outputs only one Stimulus, Fuel Request, to a Gas Tank,

while Initialize MPH outputs no Stimulus or Signal.  Using the rule defined above, both

of these Synchronous Functions should be allocated to the same task as the

transformation Mileage Reset Buttons.
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A fifth rule allocates each Synchronous Function meeting certain input

restrictions to the same task as any transformation that invokes that function.  The input

restrictions require that the Synchronous Function receive any inputs in the form of

Signals or Stimuli only from another Synchronous Function, a Triggered Synchronous

Function or a Passive Device Interface Object.  Where these input restrictions are not

satisfied the Synchronous Function must be allocated to a task based on application

knowledge unavailable to the design-decision rules.

Rule: Synchronous Function With Synchronous Inputs

if
TransformationSF is a Synchronous Function and
TransformationST is a Synchronous Function or Triggered Synchronous

Function or Passive Device Interface Object and
TransformationST sends a Signal or Stimulus to TransformationSF and
TransformationST is allocated to a TaskT and
no other Transformation that is not a Synchronous Function and is not a

Triggered Synchronous Function and is not a Passive Device 
Interface Object sends a Signal or Stimulus to TransformationSF

then
allocate TransformationSF to TaskT

record the design decision and rationale in the design history for TaskT

fi

An example where this rule might apply can be found in a remote temperature

sensor system, as described by Nielsen and Shumate. [Nielsen88, Appendix A]  In the example,

a Synchronous Function, Create ICP, receives a Stimulus, CP, from another Synchronous

Function, Determine Message Type.  Assuming that Determine Message Type is already

allocated to a task in the design, then, using the rule defined above, Create ICP would be

allocated to the same task as Determine Message Type.
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6.2.3  Allocating Transformations Based on Functional Cohesion

Some cases that involve Synchronous Functions exhibiting sequential and

functional cohesion cannot be decided solely from the data/control flow diagram.  This

type of situation arises when a Synchronous Function receives inputs from one or more

transformations that are already allocated to a task and also sends outputs to one or more

transformations that are already allocated to a task.  Allocating the Synchronous Function

to the most suitable task requires application knowledge that is unavailable to the

design-decision rules.  Such cases require the designer to select, where possible, the

preferred allocation of a Synchronous Function to a specific task, or set of tasks.  For

example, consider a situation that arises in the Robot Controller case study discussed by

Gomaa. [Gomaa93, Chapter 23]  In the example, a Synchronous Function, Process Motion

Command, receives a data flow, Motion Command, from an Asynchronous Function,

Interpret Program Statement, and sends a data flow, Motion Block, to an Asynchronous

Function.  Each of the Asynchronous Functions is allocated to a separate task.  The

allocation of Process Motion Command to one or the other of the tasks requires

application knowledge unavailable to the design-decision rules.  In this case, the human

designer can judge, based on functional cohesion, that the Process Motion Command

should be allocated to the same task as Interpret Program Statement.  The following rule

is defined to refer such ambiguous situations to the designer and to elicit any guidance the

designer might care to provide.
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Rule: Designer Specifies Allocation (Last Preference)

if
TransformationSF is a Synchronous Function and
TransformationA is any Transformation and
TransformationA sends a Signal or Stimulus to TransformationSF and
TransformationA is allocated to a task

then
show the designer the SetI of transformations that send inputs to

TransformationSF and the SetO of transformations that receive
outputs from TransformationSF such that each member of
SetI and SetO is already allocated to a task

ask the designer to select a transformation from the SetI or a 
transformation from SetO that should be allocated to the same
task as TransformationSF 

if the designer cannot make a selection
then

allocate a TaskT for TransformationSF

allocate TransformationSF to TaskT

record the design decision and rationale in the design history for 
TaskT

else
if the designer selected a member from SetI

then
denote the allocation of TransformationSF to the same task 

each as member of SetI

else
denote the allocation TransformationSF and to the same task

as the selected member of SetO

fi
fi

fi

To better understand this rule, consider how the previous example is addressed.

The rule recognizes that the Synchronous Function, Process Motion Command, cannot be

allocated directly to a specific task.  This recognition occurs because no other rule could

make an allocation.  The designer is shown the set of transformations from which Process
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Motion Command receives inputs and the set of transformations to which Process Motion

Command sends outputs.  The designer is consulted, then, to indicate whether Process

Motion Command should be allocated to the same task as one of the other

transformations.  If the designer cannot make an allocation, then Process Motion

Command becomes the basis for an asynchronous task.  If the designer makes an

allocation, then the designer’s selection is recorded for use in the following rule.

Rule: Implement Designer Allocation

if
TransformationSF is a Synchronous Function and
TransformationA is any transformation and
TransformationA is allocation to a TaskT and
TransformationSF should be allocated to the same task  as TransformationA 
(as indicated by the designer)

then
allocate TransformationSF to TaskT

record the design decision and rationale in the design history for TaskT

fi

This rule simply implements the designer’s decision that a Synchronous Function should

be allocated to the same task as a transformation that was allocated previously to a task.

6.3  Consider Task Mergers

Once a set of candidate tasks exists, consideration should be given to merging

some of those candidate tasks based on cohesion criteria.  The CODARTS design method

identifies a number of task-cohesion criteria that might apply, including:  sequential

cohesion, temporal and functional cohesion, and task inversion. [Gomaa93, pp. 197-205]

Sequential cohesion applies to tasks that cannot execute concurrently because of the

162



sequential nature of the interactions among them.  Another form of sequential cohesion,

which might be called mutual exclusion, allows candidate tasks to be combined when a

control task, that is, a task formed based upon a Control Object, orders their execution so

that they cannot execute together. Temporal cohesion applies to candidate tasks that

execute with the same period, or with harmonic periods.  Functional cohesion should be

considered together with temporal cohesion because, in general, periodic tasks should not

be combined when they represent functionally dissimilar processing; this is because the

priorities assigned to functionally dissimilar tasks are likely to vary.  Task inversion

applies to candidate tasks that have cardinalities that exceed some reasonable threshold,

and should, thus, be merged, where required to optimize the design or to reduce task

overhead.

Defining these task-cohesion criteria as a set of design-decision rules presents

several challenges.  First, multiple cohesion criteria might apply in a given situation.

This means that either a designer must be consulted to select from among the various

options, or that a preferred ordering must be built into the rules so that an appropriate

choice is made from among competing decisions.  A second challenge occurs because

some of the decision criteria might be applied in some circumstances, but not in others,

based on knowledge of the target environment or on a designer’s judgment.  Moreover,

inexperienced designers will probably not be in any position to make the required

judgments.
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To meet these challenges, two strategies are adopted when defining

design-decision rules for considering task mergers.  The first strategy establishes a

preferred ordering among competing decisions.  Seven levels of preference are used.  The

preference ordering for each rule is specified when the rule is defined; however, an

explanation of the rationale behind assigning these preferences is deferred until after all

of the rules are explained.  The second strategy ensures that certain design-decision rules,

rules requiring judgments unsuitable for an inexperienced designer, will not be used

unless an experienced designer is at work.  

6.3.1  Rules for Combining Tasks Based on Mutual Exclusion

Mutual exclusion provides the basis for two rules for combining tasks.  One rule

recognizes cases where a control task manages a set of tasks in such a manner that their

execution is mutually exclusive.

Rule:  Controlled Task Exclusive Execution (First Preference)

if 
TaskE1 is an enabled asynchronous or enabled periodic task and
TaskE2 is an enabled asynchronous or enabled periodic task and
for every TransformationT from which TaskE1 or TaskE2 is derived

TransformationT is a member of Exclusion GroupEG

then
if either TaskE1 or TaskE2 is an enabled periodic task
then combine TaskE1 and TaskE2 into a single enabled periodic TaskME

else combine TaskE1 and TaskE2 into a single enabled asynchronous
TaskME 

fi
record the design decision and rationale in the design history for TaskME

fi
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An example of where this rule applies can be found in a cruise control and monitoring

system application described by Gomaa. [Gomaa93, Chapter 22]  In this example, a Control

Object, Cruise Control, manages the operation of three Enabled Periodic Functions:

Maintain Speed, Resume Cruising, and Increase Speed.  Each of these functions adjusts a

throttle in order to affect the speed of an automobile.  The state-transition diagram within

the Control Object enables and disables the three functions in such a manner that their

execution is mutually exclusive. This relationship between the Control Object and any

mutually exclusive, enabled functions is determined through a manual examination of the

state-transition diagram.  For each such relationship discovered, an Exclusion Group is

created to link the Control Object with the mutually-exclusive, enabled functions that it

controls.

A second rule recognizes situations where mutual exclusion exists among sets of

state-independent tasks, including both asynchronous and periodic tasks, due to

application-specific restrictions.

Rule:  Independent Task Exclusion Execution (Fourth Preference)

if
TaskI1 is a asynchronous internal or periodic internal or combined internal 
task and
TaskI2 is a asynchronous internal or periodic internal task and
for every TransformationT from which TaskI1 or TaskI2 is derived

TransformationT is a member of Exclusion GroupEG

then
combine TaskI1 and TaskI2 into a combined internal TaskCI

record the design decision and rationale in the design history for TaskCI

fi
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A remote temperature sensor application, described by Nielsen and  Shumate, provides an

example where this rule applies.  [Nielsen88, Appendix A]  The data/control flow diagram for

the application includes an Asynchronous Function, Get New DP, and a Periodic

Function, Send Old DP.  Careful reading of the accompanying textual specification

reveals that these two transformations implement a stop-and-wait protocol.  Only one of

the two transformations can be active at any time.  Knowing this, a designer places these

two transformations into the same exclusion group, and then the rule specified above

considers the transformations as candidates for merger, based on mutual exclusion.

6.3.2  Rules for Combining Tasks Based on Sequential Cohesion

A form of sequential cohesion occurs in situations where a control task is locked

in some state awaiting an event from another task.  Since the control task cannot continue

until the awaited event arrives, the execution of the control task and the task it controls

must be sequential.  A rule to recognize this situation is given below.

Rule: State-Dependent Input To Control Task (Second Preference)

if TaskC is a control task derived from a TransformationCO and
TransformationCO is a Control Object and
TaskA is any task derived from a TransformationT and
(TransformationT is a State-Dependent Function  or an Asynchronous 

Function) and
TransformationT sends one or more Signals to TransformationCO and
for each SignalS from TransformationT to TransformationCO

SignalS is a locked-state event for TransformationCO and
TaskC and TaskA have identical cardinality

then
combine TaskC and TaskA into a single control TaskCA

record the design decision and rationale in the design history for TaskCA

fi
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This rule represents a complex situation identified in the CODARTS criteria for control

cohesion, see particularly the third case discussed by Gomaa. [Gomaa93, pp. 202-203] The

concept locked-state event, referred to in the rule, warrants further elaboration. 

Each Control Object in an input specification encompasses a state-transition

diagram, or STD.  A state in a STD might be called a non-locked state when the arrival

of any one of a number of events from several sources causes a transition from that state.

A state in a STD might be called a locked state when transition out of that state requires

the arrival of a single, specific event (or any one of a set of events from a single, specific

transformation).  Any event that causes a STD to transition from a locked state can be

called a locked-state event.  The locked-state events for each STD are established

through a manual review of the STD and its related data/control flow diagram.  The

cardinality of the two tasks to be combined must be identical because otherwise each

locked-state event recognized by the rule would actually represent multiple events each

coming from a different source (that is, multiple instances of the source transformation),

rather than as a separate instance of the same event type exchanged between multiple

instances of a source task and a destination task.  The STD state receiving these multiple

events fails the definition of a  locked state.

Another rule derived from the CODARTS criteria for sequential cohesion

recognizes, more simply, situations where a periodic task provides exclusive input to a

control task.  In such cases, the two tasks can be combined because the control task will

not execute until after an input arrives from the periodic task.  These two tasks, then, can
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execute sequentially.  The specification of a rule to recognize this situation is given

below.

Rule:  Exclusive Input To Control Task (Third Preference)

if
TaskC is a control task and
TaskP is a periodic device-input task or a periodic device-io task or

a periodic internal task and
TaskC and TaskP have identical cardinality and
TaskC receives inputs only from TaskP and
TaskP sends outputs only to TaskC and
TaskC is not derived from a State-Dependent Function

then
combine TaskC and TaskP into a single control TaskCP

record the design decision and rationale in the design history for TaskCP

fi

The cruise control application described by Gomaa provides an illustration of where this

rule can apply.  [Gomaa93, Chapter 22]  In the example, a Control Object, Calibration Control,

receives two input events from a Periodic Device Input Object, Calibration Buttons.

Assume that Calibration Control had been allocated previously to a control task and that

Calibration Buttons had been allocated to a periodic device-input task.  Also assume that

the control task had not already been combined with a state-dependent task.  Since

Calibration Control receives no other inputs, and since Calibration Buttons sends outputs

to no other task, these two tasks can be combined because the periodic device-input task

provides exclusive input to the control task. 

6.3.3  Rules for Combining Tasks Based on Temporal Cohesion

Temporal cohesion allows periodic tasks with identical periods to be combined.

Temporal cohesion also permits periodic tasks with unequal periods to be combined
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when the periods of the tasks meet three conditions:  1) the periods are multiples of one

another,  2) the periods are within an order of magnitude,4 and 3) the periods are closer

together than any other pair of periods that meet the first two criteria5.  

According to CODARTS, combining tasks with unequal periods requires

judgment on the part of a designer; [Gomaa93, p. 199] thus, when situations of this type occur

they should be referred to an experienced designer for a decision.  When combining

periodic tasks, care should be taken to ensure that only tasks of similar priority are

merged.  At this stage in the design process, when priorities are not yet assigned, two

factors are considered to judge the relative importance of tasks.  First, the type of task

must be identical.  This allows periodic device-input tasks, periodic internal tasks,

periodic device-output tasks, and periodic device-input/output tasks to be combined

separately from each other in case the priorities of these functions differ.  Second, for

tasks with unequal periods, the periods must be within an order of magnitude before the

tasks are eligible to be combined.  Even in this case a designer is consulted to make the

final determination.

The CODARTS temporal cohesion criteria lead to three design-decision rules.

One rule combines a periodic task with multiple instances into a single periodic task (in

CODARTS, this is called task inversion).  This makes sense because a multiple-instance

4 This condition exists because tasks with widely separated, but harmonic, periods
are likely to be assigned different priorities during design configuration.  Combining such
tasks would prevent the assignment of differing priorities.

5 This condition exists so that, when multiple pairs of harmonic tasks are candidates
to be combined, pairs of harmonic tasks with the closest periods, and thus likely the most
similar priorities, are considered before pairs of harmonic tasks whose periods are farther
apart, and thus likely to have less similar priorities.
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task is certain to be functionally cohesive and each instance of the task will have an

identical period.  Once a periodic task with multiple instances is inverted, the resulting

task then becomes eligible to be combined with other, single-instance, periodic tasks of

the same functional type.  A rule to recognize and invert periodic tasks with multiple

instances is specified below.

Rule: Periodic Task With Multiple Instances (Fifth Preference)

if
TaskP is a periodic device-input task or a periodic device-output task or

a periodic device-io task or a periodic internal task and
TaskP has a cardinality greater than one

then
invert TaskP into a single task
record the design decision and rationale in the design history for TaskP

if

An example application of this rule might be found in an elevator control system.

Suppose that on each of three floors in a building two elevator buttons exist: pressing one

requests an upwards ride on an elevator and pressing the other requests a downwards ride.

If these buttons are modeled via a Periodic Device Input Object with a cardinality of six,

then a periodic device-input task with a cardinality of six will be allocated to poll these

buttons.  This six-instance task can be converted into a single task because each instance

of the task performs the same function with the same periodicity.

Another rule, specified below, recognizes pairs of single-instance periodic tasks of

the same type and combines them into a single task.
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Rule: Periodic Tasks With Identical Periods (Fifth Preference)

if
TaskP1 is a periodic device-input task or a periodic device-output task or

a periodic device-io task or a periodic internal task and
TaskP2 is of identical type to TaskP1 and
both TaskP1 and TaskP2 have a cardinality of one and
TaskP1 and TaskP2 have identical periods

then
combine TaskP1 and TaskP2 into a single TaskP

record the design decision and rationale in the design history for TaskP

fi

A situation where this rule applies is depicted in a cruise control and monitoring system

example described by Gomaa. [Gomaa93, Chapter 22]  In the example, two periodic

device-input tasks are created: one, based on a Periodic Device Input Object, Brake,

monitors a brake sensor, while the other, based on a Periodic Device Input Object,

Engine, monitors an engine sensor.  The period of each task is given as 100 milliseconds.

Since both tasks are periodic device-input tasks with a single instance and since both

have the same period, the tasks can be combined.  Should the application call for a third

sensor, perhaps an air bag sensor, that is also polled every 100 milliseconds, then

repeated application of the rule would combine the task monitoring the air bag sensor

with the task that monitors the brake and engine sensors.

The final rule defined to reflect the temporal cohesion criteria from CODARTS

recognizes pairs of periodic tasks that might be combined even though their periods are

not identical.  Such a combination should be considered when a pair of periodic tasks of

the same type have unequal periods that are multiples of one another, provided that the

periods are within an order of magnitude.  The periods must be multiples of one another
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so that a combined task might perform some functions during each periodic invocation,

while reserving other functions for execution only during certain periodic invocations.

The periods of the two tasks should be within an order of magnitude so as to improve the

probability that the processing performed by each of the tasks has a similar priority.

Among all the pairs of tasks that satisfy these conditions, first consideration should be

given to combining the pair of tasks with the closest periods.  Again, this improves the

probability that the tasks have a similar priority.  Tasks without identical periods should

not be combined without consulting a designer because the priorities of the tasks might

not be similar enough to warrant combining the tasks, even though all the other criteria

are satisfied.  Since a designer must be consulted, this rule should only be used when an

experienced designer is available to make the final decision.  The rule is specified below.

Rule: Periodic Tasks With Harmonic Periods (Sixth Preference)

if
designer is experienced and
TaskP1  is a periodic device-output task or a periodic internal task or

a periodic device-input task or a periodic device-io task and
TaskP2 is of identical type to TaskP1 and
TaskP1 and TaskP2 have unequal periods and
TaskP1 and TaskP2 have periods that are multiples of one another and
TaskP1 and TaskP2 have periods within an order of magnitude and 
TaskP1 and TaskP2 have the closest periods that satisfy the preceding

two criteria and
both TaskP1 and TaskP2 have a cardinality of one

then
ask the designer whether these tasks should be combined
if the designer indicates the tasks should be combined
then combine TaskP1 and TaskP2 into a single TaskP

record the design decision and rationale in the history for TaskP

fi
fi
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An example were this rule applies can be found in the cruise control and

monitoring system described by Gomaa. [Gomaa93, Chapter 22]  As the concurrent design for

the example application progresses, three periodic internal tasks are created:  Determine

Speed and Distance, Compute Average Mileage, and Check Maintenance Need.  Assume

that these tasks execute with periods of 100 milliseconds, one second, and two seconds,

respectively.  The periods of each pair of these task prove to be multiples.  The first task

should not be combined with either of the others because its period is not within an order

of magnitude.  The second pair of tasks, Check Maintenance Need and Compute Average

Mileage, might be combined because they are within an order of magnitude and there

exists no other pair of periodic internal tasks to consider.  This possible combination is

referred to an experienced designer, if one is available.  If no experienced designer is

available, the tasks are not combined.

6.3.4  Rules for Combining Tasks Based on Task Inversion

Some run-time systems impose a large overhead for switching between tasks.

Such overhead can become a significant concern in real-time applications.  To enable an

optimization of the design, the task inversion criterion identified in CODARTS permits

multiple instances of a task to be replaced by a single task that performs the required

context switching inside the task.  Taking such a step requires detailed design of a context

switching mechanism internal to the inverted tasks, thus requiring extra work and

diminishing the understandability of the design.  For these reasons, inversion of tasks
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should be performed only where absolutely necessary to meet performance objectives.  A

rule to reflect this criterion is specified below.

Rule: Task Inversion (Last Preference)

if
TaskI has a cardinality at or beyond the task-inversion threshold and
the task-inversion threshold exceeds one

then
invert TaskI into a single task
record the design decision and rationale in the design history for TaskI

fi

This rule depends upon a task-inversion threshold that is defined as part of a

target environment description used for a particular design-generation session.  Whenever

a task has a number of instances that exceed the task-inversion threshold then the

multiple-instance task is inverted into a single task.

An example that might call for task inversion can be illustrated with a data

communications application, implemented in a UNIX environment.  Assume that a task is

created to manage each data connection opened with another system.  As the number of

connections increases over time, the number of UNIX processes increases.  Process

switching within a UNIX target environment can become quite time-consuming.  In this

case, as an optimization step, the task-inversion rule allows the connection management

tasks to be replaced by a single task that switches among the connections.  During

detailed design, the mechanism for switching context between connections must be

defined inside the inverted task.
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 6.3.5  Rationale for Preferred Rule Orderings 

The process that considers task mergers uses a preferred ordering among the rules

to reflect preferences for certain forms of cohesion over other forms.  In general,

preference is given to stronger forms of cohesion over weaker forms.  Among the forms

of cohesion relevant to this discussion, functional cohesion is strongest, followed in

weakening order by sequential cohesion and temporal cohesion.  Determination of

functional cohesion relies, for the most part, on application-specific knowledge

unavailable to the design-decision rules.  For this reason, functional cohesion is not

considered when assigning preferred orderings.  Instead, first preference falls to

sequential cohesion, and temporal cohesion receives next preference.  The task-inversion

criterion is assigned Last Preference because task inversion can be viewed as an optional

optimization step.  Since multiple rules exist for sequential cohesion and for temporal

cohesion, consideration must be given to distinguishing among the rules within each

category based upon some rational differences.

Among the rules for sequential cohesion, which include mutual exclusion,

preferences must be distinguished because a control task should not be combined with

both a periodic task that provides exclusive input to the control task and another task for

which the control task waits in a locked state.  Combining such tasks may lead to a

situation where the periodic function cannot be performed in time because the other,

independent function has yet to relinquish control.  When a control task qualifies for

combination based on both of these rules for sequential cohesion, weak preference is
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given to merging a control task with a task that it controls or with an aperiodic task.  This

preference is given because the periodic task in question might qualify for combination

with other periodic tasks, based on temporal cohesion.  Another situation that must be

considered occurs when a state-dependent task qualifies for combination with its control

task, based on sequential cohesion, and with another state-dependent task, based on

mutual exclusion.  In this situation a weak preference is given to combining tasks based

on mutual exclusion.  This weak preference results from a recognition that after mutually

exclusive tasks are combined then: 1) the task that controls the combined task might still

qualify for combination with a periodic or aperiodic task, based on sequential cohesion,

or 2) the combined task might still qualify for combination with its control task, based on

sequential cohesion.  This analysis suggests that, among the rules for mergers involving a

control task, the following preferences should be assigned to the rules that are derived

from criteria for mutual exclusion and sequential cohesion.

First Preference is given to combining state-dependent tasks based on mutual

exclusion. 

Second Preference is given to combining tasks based on sequential cohesion

between control tasks and state-dependent tasks.

Third Preference is given to combining tasks based on sequential cohesion

between control tasks and periodic tasks.
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The remaining rule addressing sequential cohesion, in the form of mutual exclusion

among state-independent tasks, simply receives the next available preference, or Fourth

Preference.

Among the rules for temporal cohesion preference is given to combining periodic

tasks with identical periods over combining periodic tasks with unequal periods.  This

reflects a judgment that tasks with identical periods exhibit a stronger form of temporal

cohesion than tasks with unequal, but harmonic, periods.  As a result of this distinction

between two forms of temporal cohesion, rules for combining periodic tasks with

identical periods are given Fifth Preference overall.  This leaves the rule for combining

tasks with harmonic periods as the Sixth Preference.  

Once the consideration of task mergers is completed, the basic,

application-oriented task structure for the concurrent design exists.  Additional tasks

might be added, during the next decision-making process, to monitor resources or, during

a later decision-making process, to implement message queues.

6.4  Consider Resource Monitors

Once the application-oriented tasks in a design are established, the evolving

design can be further examined to identify cases where resource-monitor tasks are

needed.  Currently, two design-decision rules are specified to allocate resource-monitor

tasks whenever multiple tasks share access to a passive output device or a passive

input/output device.  These rules reflect the CODARTS criterion, Resource Monitor

Task. [Gomaa93, p. 193]  The first rule recognizes cases where multiple tasks access the same
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passive device.  Since these cases are more general than those recognized by the next

rule, this rule receives first preference.

Rule: Multi-Task Access (First Preference)

if
TransformationPDO is a Passive Device Output Object or a

Passive Device IO Object and
TransformationPDO is accessed by a TaskAT1 and
TransformationPDO is accessed by a TaskAT2

then
create a resource-monitor TaskRM

for each TaskI that accesses TransformationPDO

deallocate TransformationPDO from a TaskI

record the design decision and rationale in the design history for
TaskI

rof 
allocate TransformationPDO to TaskRM

record the design decision and rationale in the design history for TaskRM

fi

This rule might apply in any real-time application where multiple tasks log

information to a single printer. Such applications require a resource-monitor task to

ensure data is logged in the order received.

Another rule recognizes cases where a multiple-instance task accesses a passive

output or input/output device.  This rule, specified below, must take into account whether

the accessed device resides in an Aggregation Group.  If so, then the device is not shared

but, rather, must be replicated within each instance of the accessing task.

178



Rule: Multi-Instance Task Access (Second Preference)

if
TransformationPDO is a Passive Device Output Object or a

Passive Device IO Object and
TransformationPDO receives an Input from DevicePD or

sends an Output to DevicePD and
DevicePD is not in an Aggregation Group and
TaskAT accesses TransformationPDO and
TaskAT has a cardinality exceeding one

then
create a resource-monitor TaskRM

deallocate TransformationPDO from TaskAT

record the design decision and rationale in the design history for TaskAT

allocate TransformationPDO to TaskRM

record the design decision and rational in the design history for TaskRM

fi

An example where this rule applies appears in the elevator control system

described by Gomaa. [Gomaa93, Chapter 24]  In the example, a number of passive output

devices appear, including three types of lamps:  Floor Lamps, Direction Lamps, and

Elevator Lamps.  Each of these devices receives data from transformations that are

grouped into a multiple-instance task, Elevator Controller.  Two of the devices, Floor

Lamps and Direction Lamps, do not reside in an Aggregation Group.  The rule specified

above allocates one resource-monitor task for each of this pair of devices.  The third

device, Elevator Lamps, is a member of an Aggregation Group.  The rule specified above

does not allocate a resource-monitor for the Elevator Lamps.

6.5  Review Task Structure and Consider Renaming Tasks

After task structuring is complete, the designer is then given an opportunity to

review the task structure.  The review can be used to examine the results obtained by
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applying Task Structuring Knowledge to the input data/control flow diagram.  If the

designer is dissatisfied with the results, then they can be discarded.  A single rule, not

given here, drives the task review and renaming that completes the structuring of tasks.
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